

Required Report: Required - Public Distribution **Date:** December 08,2020

Report Number: KS2020-0075

Report Name: Agricultural Biotechnology Annual

Country: Korea - Republic of

Post: Seoul

Report Category: Biotechnology and Other New Production Technologies

Prepared By: Seungah Chung

Approved By: Neil Mikulski

Report Highlights:

Korea is in the process of drafting a proposal to revise its existing Living Modified Organism (LMO) Act to cover products of innovative biotechnologies, including genome edited products. In September 2020, Korea announced a "Plan to Promote Green-Bio Convergence Emerging Industry" aimed at doubling the size of its five green-bio sectors. This plan includes an effort to develop more genome edited seed varieties and bio-materials by 2030. In September 2020, a Korean lawmaker submitted a draft bill that would increase the scope of the country's biotech labeling requirement to cover any product derived from biotech ingredients, eliminating exemptions for certain processed products.

Executive Summary

Korea is heavily dependent on imported food and feed grains. While only a limited number of Korean food products are produced from biotechnology due to negative consumer sentiment, the bulk of livestock feed is biotech corn and soybeans. The United States is the top genetically engineered (GE) grain exporter to Korea, followed by Argentina and Brazil. Total U.S. GE grain exports to Korea from January through August 2020 reached 2,908,000 metric tons (MT), out of Korea's total GE grain imports of 7,886,000 MT.

In September 2020, 10 ministries led by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) finalized a "Plan to Promote Green-Bio Convergence Emerging Industry" to address agricultural, environmental, and health issues and create more jobs. The goal of this plan is to double the industry of Korea's five green-bio sectors by 2030. The five green-bio sectors include 1) microbiome, 2) meal replacement, medical food, 3) seed, 4) veterinary medicine, and 5) other bio-materials (insects, marine, and forestry). For seed production, "gene scissors" (genome editing) and digital breeding were chosen as core technologies to invest in and develop. For veterinary medicine, the government will support development of animal vaccines using protein recombinant technologies and stem cell research. Details on the planned budgets and governmental support for these initiatives are not available at this time.

Korea has not issued a regulatory policy for products of innovative biotechnologies and is in the process of drafting a proposal. This proposal may require Korea to revise its existing Living Modified Organism (LMO) Act.

Korea requires mandatory GE labeling for any food product that contains detectable GE ingredients with exemptions for cooking oils and syrups. Currently, this labeling requirement does not apply to GE food additives or ingredients derived from microbial biotech used in food. However, demands raised by anti-biotech non-government organizations (NGOs) have compelled the Ministry of Food & Drug Safety (MFDS) to form a consultative body consisting of NGOs and industry groups to reach a consensus on the potential expansion of biotech labeling requirements. In September 2020, a Korean lawmaker submitted a draft bill to increase the scope of the country's biotech labeling requirement to cover any product derived from biotech ingredients.

In 2019, a Korean consumer survey on genome editing indicated that 37 percent of respondents were aware of this new technology. While the majority of those knowledgeable about genome editing were in support of the technology for medical purposes, only about half of those respondents supported its use in food and agriculture.

<u>Useful Acronyms</u>

APQA: Animal and Plant Quarantine Inspection Agency

ERA: Environmental Risk Assessment

GE: Genetically Engineered

GMO: Genetically Modified Organism

KBCH: Korea Biosafety Clearing House

LMO: Living Modified Organisms

MAFRA: Ministry of Agriculture, Food, and Rural Affairs

MOE: Ministry of Environment

MFDS: Ministry of Food and Drug Safety MHW: Ministry of Health and Welfare

MOTIE: Ministry of Trade, Industry and Energy

NAQS: National Agricultural Products Quality Management Service

NFRDI: National Fisheries Research & Development Institute

NIAS: National Institute of Animal Science

NIE: National Institute of Ecology

NSMA: National Seed Management Agency RDA: Rural Development Administration

KDCA: Korea Disease Control and Prevention Agency

CHAPTER 1: PLANT BIOTECHNOLOGY

Part A. Production and Trade

A) Product Development

In Korea, the development of modern biotechnology (biotech) products that can be genetically engineered (GE) is led by various government agencies, universities, and private entities. Research is mainly focused on second and third generation traits, such as drought and disease resistance, nutrient enrichment, and altered gene expression. From January to October 2020, the Rural Development Agency (RDA) has approved a total of 148 research cases for field trials conducted by RDA's designated evaluation entities and private entities.

In 2020, Korea has 121 events in 19 varieties of products under development. These products include but are not limited to:

- rice contains new materials and functional ingredients
- insect-resistant rice
- environmental stress-tolerant rice
- low gluten wheat
- pepper with flavonoid biosynthesis
- pepper with carotenoid biosynthesis
- corn with gene expression control

- beans with anthocyanin biosynthesis
- insect-resistant beans
- herbicide-tolerant bentgrass
- Korean cabbage producing antigen protein
- insect-resistant cotton
- herbicide-tolerant canola
- calcium-fortified apple.

Safety assessment data is currently being generated for bentgrass. Jeju National University developed an herbicide-tolerant bentgrass under RDA's Next Generation Bio-Green 21 Project that was submitted to RDA for an environmental risk assessment (ERA) in December 2014 and remains under review. Although a great deal of research has been completed, the earliest completion of the regulatory review process for herbicide-resistant bentgrass is five years. Commercialization is expected to be delayed due to continued opposition from anti-biotech NGOs and local farmer groups.

In 2016, resveratrol-enriched rice received approval for health and medical use from the Ministry of Health & Welfare (MHW). Resveratrol is known to be an antioxidizing polyphenol. This product was initially developed for food use, but due to push back from anti-biotech NGOs and local rice farmers, RDA did not approve this intended use.

Without stronger support and advocacy from Korean farmers, commercialization of GE crops in Korea is unlikely. Farmer support for actively using this technology is key to increasing consumer confidence in biotech food.

In September 2017, RDA acquiesced to local NGOs' request to stop commercialization of GE products in Korea. RDA also dismantled their leading GE product development team, the National Center for Genetically Modified (GM) Crops and renamed it the Agricultural

Biotechnology Research Center. This was in response to long-term pressure exerted by NGOs to stop GE rice field trials and commercialization. Anti-biotech groups welcomed this change, but pro-biotech Korean researchers and politicians criticized RDA's decision.

RDA continues to develop GE products but has increased transparency and advocated for continuing GE research as necessary for Korea to address climate change and better understand imported GE products. In addition to their own research, RDA funds GE research teams through the Next Generation Bio-Green 21 Project. RDA planned to invest another 300 billion won (approximately \$260 million USD) by the end of 2020 to develop additional projects.

In April 2019, the Rural Development Administration (RDA) announced a new Center to Commercialize New Breeding Technologies. This Center supports improvement of Korea's competitiveness in the field of breeding, which it sees as an engine for future growth. The Center leads development and commercialization of innovative biotechnologies products, investing a total of 76 billion Korean won (approximately \$63 million USD) over seven years. Korea has yet to issue regulatory policies for products of innovative biotechnologies and is building consensus among relevant ministries on future policies and regulations.

In 2017, Korea published its 3rd LMO Safety Management Plan, which aimed to:

- Establish an emergency response team for unintentional release incidents of GE events,
- Further develop an effective biotech management system,
- Prepare a safety management plan for innovative biotechnologies,
- Improve the LMO Act, and
- Other related tasks.

In 2018, the plan went into effect, and Korea projects to spend 82 billion Korean won (approximately \$75 million USD) over five years to implement the LMO Safety Management Plan.

B) Commercial Production

Despite substantial investment in biotech research, Korea has yet to commercially produce any biotech products. In 2017, RDA, the leading government research agency, announced that they would not allow domestic commercial production of biotech crops in response to domestic anti-biotech NGOs.

C) Exports

Korea does not export any biotech crops.

D) Imports

Korea imports biotech products for food, feed, and processing but not for cultivation. The United States, followed by Argentina and Brazil, is the largest supplier of biotech grains and oilseeds to the Korean market.

In calendar year 2019, Korea imported a total of 11.4 million metric tons (MT) of corn, which consisted of 9.0 million MT for feed and 2.4 million MT for processing. Imports from the

United States reached 2.7 million MT or 24 percent of the total. Nearly all of the corn imported from the United States was GE.

In processing, imported GE corn is generally used to make high fructose corn syrup or corn oil. Both uses are exempt from GE labeling requirements due to the absence of detectable GE proteins in the final product. Despite mounting pressure from anti-biotech NGOs, some Korean processors continue to use biotech corn as it is readily available and affordable.

In 2019, Korea imported a total of 1.24 million MT of soybeans, primarily for crushing. The United States was the largest soybean supplier, exporting nearly all of the total volume. Soybean oil is also exempt from GE labeling requirements because the GE protein is undetectable. Soybeans for food processing, used to make tofu, bean paste, and bean sprouts, are primarily derived from conventional varieties.

Table 1: Imports Statistics for GE Soybeans and Corn (Calendar year basis / Unit: 1,000 MT)

Classification		2016	2017	2018	2019	2020 Jan- Aug	
			Volume	Volume	Volume	Volume	Volume
	D 1	US	384	397	576	885	194
Soybean	Food	Non-US	598	646	473	118	549
	(Crushing)	Total	982	1,043	1,049	1,003	743
		US	630	703	989	553	296
	Food	Non-US	392	536	169	599	347
Com		Total	1,022	1,239	1,158	1,152	643
Corn		US	3,715	3,558	6,137	2,046	2,261
	Feed	Non-US	3,847	3,610	1,714	7,284	4,070
		Total	7,562	7,168	7,851	9,330	6,331
		US	16	119	131	112	157
Oilseeds	Feed	Non-US	159	32	21	46	12
		Total	175	151	152	158	169

Source: Korea Biosafety Clearing House

Note: Table 1 contains import statistics for biotech grains and oilseeds. This data differs slightly from numbers reflected in the preceding paragraphs as it is based on Korea's reported import approval volumes and not customs data. For more information on Korea's feed grain and oilseeds production, supply, and demand, please see the latest reporting in the GAIN system.

E) Food Aid

Korea is not a food aid recipient. Korea provides intermittent food aid to North Korea depending on political conditions. Korea participates in the Association of Southeast Asian Nations (ASEAN) Plus Three Emergency Rice Reserve (APTERR), which was established in 2013 to provide member countries with rice in the event of natural disasters. Korea has provided 90,000 metric tons (MT) of rice to date out of their 150,000 MT commitment. In January 2018,

Korea joined the Food Assistance Convention, which allows Korea to draw down its rice stocks that are currently held in storage.

In both 2019 and 2020 Korea shipped 50,000 MT of domestic rice through the WFP, including 19,000 MT to Yemen, 16,000 MT to Ethiopia, 10,000 MT to Kenya, and 5,000 MT to Uganda. In 2019, Korea shipped 500 MT of domestic rice to Myanmar and Laos each through APTEER, and in 2020 Korea shipped 950 MT of domestic rice to Philippines through the same organization.

F) Trade Barriers

Concerns over Korea's approval and risk assessment process for imported biotech products intended for food, feed and processing (FFP) has grown. Specifically, industry considers some of Korea's five reviewing agencies to be redundant. As previously stated, Korea does not cultivate GE crops domestically, and risk assessments requirements and questions by some of the reviewing agencies that related to cultivation of imported FFP products have drawn concern. There are also concerns that some data requirements lack scientific justification or relevance to the products' intended use. The approval process can be slow, contributing to delays in U.S. farmers' access to biotech tools for products intended for export to Korea. See further details on this issue under the Policy/ Approvals subsection.

Additionally, in accordance with the MFDS requirements for food labeling, Korea maintains a zero-tolerance policy for the inadvertent presence of biotech ingredients in processed organic-labeled products. Any suppliers of organic products that test positive for GE material at any level must remove an organic claim from the product label. In the event of a violation, Korea's National Agriculture Product Quality Service (NAQS) may also investigate the case to determine if the breach was intentional.

Shippers of U.S. processed food products that contain conventional soy, corn, canola, cotton, sugar beet, and alfalfa are required to submit additional documents to receive an exemption from the mandatory biotech labeling requirements. See details on Korea's labeling requirements under the Labeling and Traceability subsection.

Part B: Policy

A) Regulatory Framework

Korea ratified the Cartagena Protocol on Biosafety (CPB) on October 2, 2007 and subsequently implemented their LMO Act as the overarching law governing CPB parties' biotechnology-related rules and regulations.

The LMO Act was implemented in 2008 and revised in 2013. Since the LMO Act's implementation, the U.S. has expressed concerns regarding unresolved redundant regulatory reviews and failure to distinguish between products intended for FFP and cultivation.

Roles & Responsibilities of Government Ministries

	ies of Government Ministries
Ministry	Role and Responsibilities
MOTIE	National competent authority for the CPB, responsible for enforcing the LMO Act and managing issues related to the development, production, import, export, sales, transportation, and storage of biotech products intended for industrial use.
Ministry of Foreign Affairs (MOFA)	National point of contact for the CPB.
MAFRA	Possesses authority for matters related to the import or export of agricultural, forestry, or livestock biotech products.
RDA (overseen by MAFRA)	Conducts ERAs and consultations for biotech products and leading developer of biotechnology products in Korea.
Animal and Plant Quarantine Agency (APQA) (overseen by MAFRA)	Conducts import inspection of biotech products for agricultural use at the port of entry.
NAQS (overseen by MAFRA)	Handles import approval of biotech products for feed use.
Ministry of Oceans and Fisheries (MOF)	Possesses authority for matters related to the trade of maritime biotech products, including risk assessments.
MHW	Possesses authority for matters related to the import or export of biotech products used for health and pharmaceutical purposes, including human risk assessments.
Korea Disease Control and Prevention Agency (overseen by MHW)	Oversees human risk consultation for biotech products.
MFDS (under the Prime Minister's Office)	Possesses authority for matters related to the import or export of biotech products for food, pharmaceutical, and medical devices, food safety approvals of biotech products, and the enforcement of labeling requirements for non-processed and processed food products containing biotech ingredients.
Ministry of Environment (MOE)	Possesses authority for issues related to the trade of biotech products that are used for the purpose of environmental remediation or release into the natural environment, including risk assessments, not including biotech products for cultivation.
National Institute of Ecology (NIE) (overseen by MOE)	Handles import approval of biotech products under jurisdiction of MOE and environmental risk consultation
Ministry of	Possesses authority for issues related to the trade of biotech products

Science,	that are used for testing and research, including risk assessments.
Information	
Communication	
Technology and	
Future Planning	

Role and Membership of the Biosafety Committee

In accordance with Article 31 of the LMO Act, a Biosafety Committee was formed to review the following items relevant to the import and export of biotech products:

- Factors relevant to the implementation of the Cartagena Protocol,
- Establishment and implementation of the safety management plan for biotech products,
- Re-examination in accordance with the provisions of Article 18 and Article 22 of appeals by an applicant that is denied import approval, etc.,
- Factors relevant to legislation and notification pertinent to the safety management, import, and export, etc. of biotech products,
- Factors relevant to the prevention of damage caused by biotech products, if any, and measures taken to mitigate damage caused by biotech products, if any,
- Factors requested for review by the chair of the Biosafety Committee or the head of the competent national authority.

The Biosafety Committee is comprised of 15-20 members, including vice ministers from the seven relevant ministries noted above and the Ministry of Planning and Finance. Non-government specialists, such as professors from Korean universities, can also be members of the Biosafety Committee.

This body is responsible for reconciling differing positions among the relevant ministries. Each relevant ministry holds authority and responsibility in its respective area, and as chair, the MOTIE minister resolves matters lacking consensus. This group is only believed to have met officially in April 2018 but conducts meetings via document circulation.

Within the Committee a technical group consisting of experts from relevant ministries also gathers to discuss specific issues; for example, to discuss mitigation measures following the detection of unapproved GE canola. The technical committee meets six times a year and follows the status of risk assessments and consultation reviews. Due to the COVID pandemic, the technical committee had fewer meetings over the last year.

Political Influence

Regulatory decisions related to agricultural biotechnology are influenced by political pressure, mostly from anti-biotech NGOs, some of which are appointed to the government's food safety and biotechnology risk review committees. These groups use their positions to encourage strict government policies on the use of biotechnology, such as the draft revision to the Food Sanitation Act to require GE labeling for any product.

B) Approvals

Whether grown domestically or import, biotech products must undergo a food safety assessment and an ERA. MFDS conducts the food safety assessment, consulting with RDA, NIE and NFRDI. While the ERA is also referred to as a feed approval, the review is largely focused on environmental impact and not animal health. RDA conducts the ERA, consulting with NIE, NFRDI, and Korea Disease Control and Prevention Agency.

Overlap between agencies and non-science-based data requirements unnecessarily delay Korea's approval process for biotech products. In 2015, in response to continued requests to streamlining their procedures, Korea introduced a pilot project called "Joint Consultation Review Committee", which combined NFRDI and NIE committees. Only one product was reviewed in 2016 under this pilot project.

The results of the pilot project demonstrated few efficiencies were achieved. However, in 2017, Korea proposed another pilot program called the "Committee on Additional Data Requests", which Korea believed would reduce additional information requests by convening a monthly meeting among five reviewing agencies. Like the previous pilot program, there were no significant improvements, as each agency continues to request additional information.

As of October 2020, MFDS has granted food safety approval for 211 events, including 177 plant products, 27 food additives, and seven microorganisms. RDA has approved 169 products for use in feed. See Appendix for a complete list of approved events.

C) Stacked or Pyramided Event Approval

Following substantial, long-term engagement from the United States, MFDS does not require a full safety assessment for stacked events, if they meet the following criteria:

- The traits being combined were already approved individually,
- There is no difference in the given traits, intake amount, edible parts, and processing method in the stacked event and the conventional non-biotech counterpart, and/or
- There is no crossbreeding among subspecies

Similarly, RDA only requires an ERA for stacked events if there is interaction between traits in the inserted nucleic acid of the parental line or other differences are noticed. However, concerns remain over delays and additional information requests by MFDS and RDA for stacked events.

D) Field Testing

From January to October 2020, a total of 148 field trials were approved, and in 2019, RDA authorized contained field trials for 183 products. RDA renews the field trial permits every year. According to the Consolidated Notice, field trials are required for imported biotech products used as seed, and RDA will review the data from field trials conducted in the exporting country for those used as FFP. However, RDA may require field trials for FFP use. Products subject to field trials must follow RDA's "Guidelines for Research and Handling of Recombinant Organisms Related to Agricultural Research" and should adhere to voluntary guidelines published by MHW, entitled "Guidelines for Research of Recombinant Organisms."

E) Innovative Biotechnologies

Despite industry pleas, Korea has not issued a policy on how to regulate products made through innovative biotechnologies (e.g. genome editing). Korea is closely monitoring policy developments in other countries and may release a draft policy in 2020 or 2021.

F) Coexistence

As biotech crops are not yet grown in Korea, there are no co-existence policies. However, following several reports of GE volunteer corn near Korean feed mills, farmer groups have demanded more government oversight of imports and movement of GE crops in Korea to prevent the inadvertent release of GE crops in domestic production.

G) Labeling and Traceability

In 2017, in accordance with a revision to the Food Sanitation Act, MFDS implemented new mandatory GE labeling requirements that expanded labeling to all detectable products. MFDS is responsible for enforcement of GE labeling guidelines for the purpose of consumers' right to know. Unprocessed and certain processed human food products containing GE ingredients must carry "genetically modified" (GM) food labels. Currently, there are very few products on the market with a "GM" label.

Exempted products include cooking oil, sugar (glucose, fructose, taffy, sugar syrups, etc.), soy sauce, modified starch, and alcoholic beverages (beer, whisky, brandy, liqueur, distilled spirits, etc.). Supporting document are not required for exemptions from GE labeling requirements for these products. The revised rule also exempts biotech derived processing aids, such as enzymes, carriers, diluents, and stabilizers from GE labeling, but manufacturers are required to provide documentation.

For products that contain or may contain detectable GE ingredients, examples of labels are as indicated in Table 2. For more information, please see 2017 GAIN report titled "Biotech Labeling Requirements Update."

Table 2: Cases and examples of GE labeling.

Cases	Examples				
GE grains or oilseeds	"GM corn" or "C	"GM corn" or "GM soy"			
Products containing GE grains or	"Containing GM	I corn" or "Containing GM soy"			
oilseeds					
Vegetables grown from GE grains	"Beansprout gro	wn from GM Soy"			
Products containing vegetable	"Containing bea	nsprout grown from GM soy"			
from GE grains					
May contain GE grains/oilseeds	"May contain GM corn" or "May contain GM soy"				
May contain vegetable from GE	"May contain beansprout grown from GM soy"				
grains					
Food product with detectable GE	Principal	"GM Food", "GM Food Additive", "GM			
component	Display Panel	Health Functional Food", "Food product			
(labeled on either principal		containing GM soy", "Food additives			
display panel or ingredient panel)		containing GM corn", or "Health			
		functional food containing GM corn"			

		"GM" or "GM soy" or "GM corn" in
		parentheses next to a name of raw
		ingredient on the ingredient panel
Food products containing GE	Principal	"May contain GM corn and soy"
ingredients from multiple sources	Display Panel	
Food products for which	Principal	"May contain GM soy" or "May contain
detectable GE component is	Display Panel	GM corn"
uncertain.	Ingredient Panel	"May contain GM soy" or "May contain
		GM corn" in parentheses next to a name of
		raw ingredient on the ingredient panel

Korea allows for up to three percent unintentional presence of approved GE components in unprocessed conventional products that carry an identity preserved or government certificate. For test certificates to get exemptions from GE labeling, only negative test results issued by an MFDS-accredited laboratory are accepted. Intentional mixture of GE ingredients requires GE labeling even if the final presence of biotech ingredients is within the three percent threshold.

Table 3: Unintentional GE Presence and "GM" Labeling

	Threshold	Label				
Conventional Bulk Grain Shipments Containing Unintentional GE Presence						
with IP or government certificate	3%	"GMO" label is exempted.				
without IP or government certificate	0%	"GMO" label shall be affixed.				
Processed Products Contain	ning Unintentional GE P	resence				
with IP or government certificate	3%	"GMO" label is exempted.				
without IP or government certificate	0%	"GMO" label shall be affixed.				
Bulk Grains and Processed	Products Containing In	tentional GE Presence				
"GMO" label shall be affixed.						
Processed product containing no foreign DNA, such as syrups, oils, alcohols and						
processing aids						
Exempt from mandatory "GN	MO" labeling without any	further documentation required.				

MFDS is conducting a safety assessment for GE potato products. Potatoes and any products containing potato-derived ingredients will be subject to mandatory GE labeling as soon as MFDS approves the GE potatoes. Additionally, companies marketing conventional potatoes and processed products containing conventional potato-derived ingredients will be required to submit documents to receive an exemption from mandatory GE labeling.

Anti-biotech NGOs continue to pressure MFDS to expand GE labeling to any products made of GE ingredients. Previously, MFDS attempted to expand GE labeling, but it was not implemented following feedback from the local industry. In 2018, the Korean government

recommended the establishment of a consultation body to discuss GE labeling, comprised of NGOs and food industry representatives. There were nine meetings, but parties failed to narrow their differences. In January 2020, MFDS formed a new consultation body consisting of consumer groups, NGOs and industry to reach an agreement on expanded GE labeling. However, due to the COVID pandemic, few meetings have occurred and no progress has been made.

In September 2020, a lawmaker from a ruling party submitted a draft bill to expand GE labeling to any products made of GE ingredients. No further information on the progress of this bill has been reported.

In April 2007, MIFAFF (a previous title of MAFRA) revised its Feed Manual to require retail packaged animal feed to carry a "GMO" label when the product contains biotech ingredients. This labeling requirement has been in place for more than a decade with industry conforming to the rule with little to no reported issues.

The 2017 revision to the Food Sanitation Act prohibited a "non-GMO" or "GMO-free" claim on products that do not have GE counterparts. However, it allows for voluntary "non-GMO" or "GMO-free" claims for products that do not contain any trace of a GE component (foreign DNA or protein) and that contain at least 50 percent of raw ingredients or the largest ingredient by volume that are subject to GE labeling rules. Importers must keep relevant documentation to support the voluntary claim, which can include a testing certificate issued by MFDS accredited laboratories. For more information, please see GAIN reports KS1716, KS1004, and KS1046.

H) Monitoring and Testing

Korea actively tests for GE traits in imports and domestic products. MFDS and the Animal and Plant Quarantine Inspection Agency (APQA) test imported agricultural products for GE traits at the port of entry. MFDS and NAQS also test food products and feed grains in the marketplace for GE traits. If an unapproved trait is found, the products will be returned or destroyed.

In 2009, NIE (formerly the National Institute of Environmental Research, NIER), under MOE, began monitoring for imported GE canola, corn, cotton, and soybeans in domestic cultivation. NIE, as the designated ERA agency, collected and tested samples countrywide and concluded that GE FFP imports were inadvertently released during transportation in Korea.

In 2013, the National Seed Management Agency (NSMA) under MAFRA took charge of Korea's monitoring for unapproved GE products in imports and domestic goods. NSMA approves and regulates domestic and imported seeds. In 2017, NSMA detected the first unapproved GE product (canola) in imports and found the unapproved GE canola in 56 locations in Korea. Shortly after in 2017, the NIE, the agency monitoring adventitious environmental release of GE products, detected unapproved GE cotton growing domestically. (Note: Cotton is grown as an ornamental in some Korean gardens and not as commercial crop.) Since then, NIE continues to conduct annual monitoring of adventitious environmental release of GE products.

In 2018, NSMA heightened inspection of imported grain seed by increasing sample size and testing samples of canola and cotton seeds before planting. By 2022, NSMA plans to expand

this pre-planting testing to soy, corn, wheat, and flaxseed. In the past, MFDS and APQA have tested for unapproved GE events in shipments of imported corn, papaya, rice, and wheat. Some testing is random (Liberty Link rice); other testing is mandatory (wheat and papaya).

I) Low Level Presence (LLP) Policy

Korea does not have an LLP policy for unapproved biotech products. Instead, Korea has an "adventitious presence" policy that allows as much as 0.5 percent of the content of a conventional feed shipment to contain unapproved biotech products.

J) Additional Regulatory Requirements

For GE products intended for FFP, no additional registration is required other than an approval. For GE products intended for propagation, the product must complete a seed approval as well as GE approval for cultivation by submitting local field trials data. So far, no GE products have been approved for cultivation.

K) Intellectual Property Rights (IPR)

Although Korea does not allow for domestic cultivation of GE products, there are intellectual property rights protections under existing domestic regulations.

L) Cartagena Protocol Ratification

Korea ratified the CPB in 2007 and implemented the LMO Act, the legislation implementing the CPB, in 2008. The first revision of the LMO Act was issued in 2012 and was implemented in 2013. MOTIE revised its implementing regulations to harmonize with the LMO Act in 2013 revisions and the Consolidated Notice in 2014. The revision sought to improve the approval process, but MOTIE failed to fully address concerns related to the redundant reviews. After long-term engagement from the United States about concerns from domestic industry and foreign trading partners on language used to implement the CPB, in 2013, Korea began allowing exporters to provide a list of all biotech products approved for use in Korea on the commercial invoice. Importers can use the same list in the import application form, which has reduced trade disruptions.

M) International Treaties and Forums

Korea is actively participating in Codex, International Plant Protection Convention, Asia-Pacific Economic Cooperation, World Trade Organization, Organization for Economic Co-operation and Development, and other meetings on GE plants. Korea notifies the WTO of their proposed changes and gather comments from trading partners. Korea applies substantial equivalence principles of Codex in their safety assessment process.

N) Related Issues

No further issues.

Part C: Marketing

A) Public/Private Opinions

According to local survey results, Korean consumers are generally aware of and hold a pessimistic view of agricultural biotech. They are willing to pay more for non-GE food. The 2013 detection of GE wheat in Oregon alarmed Korean consumers, who perceived it as inadequate management of GE production in the United States. The detection gave momentum to a civic group called the "Citizens Coalition for Economic Justice", which demand expanded GM labeling in Korea. This organization is active with the National Assembly and MFDS. In light of these sensitivities, many domestic food manufacturers are somewhat reluctant to use biotech ingredients and carry GM-labeled foods. Repeated detections of GE wheat in Washington in 2016 and 2019 reinforced perceptions that the management of GE production in the United States is inadequate and that future incidents may occur.

There is also support for biotech within the Korean publics. Research institutes develop new GE products, and Korea imports substantial biotech ingredients for further processing into products that are exempt from GM labeling. The general public seems unaware of or indifferent to this fact.

B) Market Acceptance/Studies

There are contradictory views about biotech in Korea. The public holds positive views on the use of biotech for animals or medical purposes but negative views towards its use in in agriculture. This was demonstrated in the 2019 KBCH annual survey of 800 Korean consumers' biotech perceptions.

Survey results showed that consumer awareness remains high, and perceptions have improved substantially from the previous year. Seventy-two percent answered that biotech would be beneficial to humans, which was up from 65 percent in 2018; only five percent answered to the contrary. Nearly half who answered that biotech is beneficial answered that it was beneficial to curing diseases, such as cancer, and 29 percent answered that it might help solve food shortage issues by producing more food grains. Of those who answered it was not beneficial, 47 percent questioned the safety to humans, and 31 percent thought that biotech is unnatural. Eighteen percent believed biotech would have a harmful effect on the environment.

For innovative biotechnologies, including gene scissors, 37 percent of the respondents were aware of this new technology. Seventy-four percent and 66 percent of the respondents supported its use in the medical, pharmaceutical and bio-industry sectors, respectively. Fifty percent and 45 percent support its use in the food/agriculture and livestock sectors. Although many respondents supported its use, 84 percent answered that innovative biotechnologies should be regulated due to safety and unintentional effects.

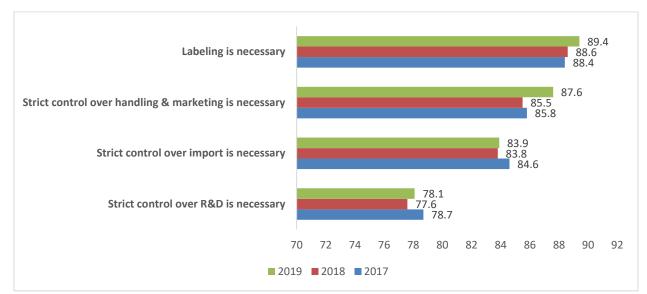


Figure 1: Korea's perspective on biotech regulations

Source: Korea Biosafety Clearing House

Around 75 percent of respondents answered that research and development (R&D) was necessary, and 55 percent answered that it was necessary for Korea to grow biotech crops. Thirty-seven percent of respondents answered that it was necessary for Korea to raise biotech animals domestically. About 22 percent responded that it was necessary for Korea to import biotech products from foreign countries. Over 89 and 87 percent were in favor of labeling and strict import controls on biotech products, respectively.

About 21 percent of respondents were interested in biotech products, and 40 percent of these respondents were interested because of safety concerns. Respondents obtained information on biotech products mostly from the internet, followed by TV.

CHAPTER 2: ANIMAL BIOTECHNOLOGY

Part D. Production and Trade

A) Product Development

Korea is actively using genetic engineering to develop animals that can produce new biomedicines and bio-organs. Korea is also using cloning technology to expand the number of animals with a high capacity to produce biomedical products. The research is being led by various public and private entities, including academia.

In January 2020, RDA reported that they created a mini-antibody protein producing strain of Lactobacillus paracasei. After feeding the mini-antibody protein to virus infected chickens, the level of virus detected in the chickens was decreased. This study confirmed that a transformed Lactobacillus paracasei was able to deliver a mini-antibody to chicken. In January 2019, RDA announced its annual work plan that included the creation of a future growth engine using agricultural technology for medical purposes, such as research on pig cornea transplants to monkeys. In June 2019, RDA obtained a U.S. patent to produce transgenic pigs as an Alzheimer's disease model to help identify the causes of Alzheimer's and aid in drug screening. RDA has since transferred their technique to a company that specializes in stem cell/cell therapy products.

In January 2018, RDA announced a three-year cooperation project with the National Swine Resource and Research Center in the U.S. to introduce a management system to control pathogens, a training program, and technology to carry out research on transgenic animals. RDA believes that this project will help standardize the management system of transgenic animals and produce bio and pharmaceutical materials through transgenic animals.

Since 2010, the National Institute of Animal Science (NIAS) of RDA has been focusing on the development of new biomedical materials, such as bio-organs, diversity of animal genetic resources, value-added livestock products, and renewable energy using livestock resources, with the goal of becoming a "world G7 livestock technology country." NIAS is conducting research to develop 17 different traits in two animals: 10 traits in swine and 7 traits in poultry. These traits are designed to produce high-value protein and antivirus materials, swine-producing material that can treat anemia, hemophilia, and thrombus, and chickens producing eggs with lactoferrin and antioxidant substances.

RDA is also conducting research to develop 2 different traits using silkworms. Traits under development will enable production of silk in various natural colors and treat a swine disease. In 2018, RDA announced that they developed "Fluorescent silk" using a transgenic silkworm. RDA plans to continue additional research to use fluorescent silk in bio sensors, functional fabric, materials for semi-conductors, and more. NIAS also supplied 48 cloned, special purpose dogs, such as detection or sniffer dogs, to other agencies in Korea. Currently, RDA does not have any plan to develop GE or cloned animals for food use.

In 2018, MAFRA announced details on how to carry out the 2nd Overall Plan for Promotion of Science and Technology for Agriculture, Forestry and Food. MAFRA invested 91 billion

Korean won (approximately \$90 million USD) in agri-bio resources in 2018, which covered production of pigs for bio-organs, mass production of bio-energy source, and high-value pharmaceutical materials, among others. MAFRA and RDA will continue to develop new bio-materials using animal biotechnology.

Private entities are also developing GE animals that produce high-value protein pharmaceuticals, such as milk producing pigs that express a human growth hormone gene. Others are developing transgenic cattle that can produce lactoferrin and insulin, a fluorescent dog for human disease research, chickens that purportedly produce substances to treat leukemia, and mini-pigs for production of bio-organs. In 2015, professors from Korean and Chinese universities announced that they made a pig with higher muscle content using gene editing. The team removed a gene called MSTN, which inhibits muscle growth, from a somatic cell and cloned pigs using nuclear transplantation with the edited gene.

B) Commercial Production

As is the case with biotech plants, Korea does not commercially produce any GE animals, and the future of domestic production is uncertain. Korean researchers are relatively unwilling to engage in research on GE animals for commercial food use due to uncertainties over consumer acceptance.

C) Exports

Korea does not export any biotech animals.

D) Imports

Korea imports GE mice for research purposes.

E) Trade barriers

In 2017, MFDS initiated mandatory testing of imported salmon due to reports of GE salmon raised in Panama and marketed in Canada. This testing applied to fresh and frozen salmon originating from the U.S., Canada, and Panama. From October 10, 2017 through December 31, 2017, every import of salmon per manufacturer was tested with no positive detections. Following this period, MFDS conducts random testing of five percent of incoming fresh and frozen salmon from the United States., Canada, and Panama.

Part E. Policy

A) Regulatory Framework

The LMO Act and its implementing regulations also applies to GE animals, but no specific regulation has been established for the management of GE animals. Pharmaceuticals produced from GE animals are governed by the Pharmaceuticals Affairs Act.

B) Approvals

MAFRA is responsible for the approval of GE animals but has not permitted any to date. MFDS is responsible for the safety evaluation of GE animals and fishery products for human consumption under its GE safety evaluation guidelines.

C) Innovative Biotechnologies

Despite growing interest, Korea has not issued a policy on how to regulate animals produced through innovative biotechnologies (e.g. genome editing). Korea is closely watching policy developments in other countries.

D) Labeling and Traceability

MAFRA is responsible for the labeling of GE animals but has not yet established any regulations. MFDS is responsible for the labeling of food products containing ingredients originating from GE animals in accordance with MFDS Labeling Requirements for GM Food.

E) Intellectual Property Rights

Although Korea does not import or domestically produce GE animals, there are intellectual property rights protection under existing domestic regulations.

F) International Treaties and Forums

Korea actively participates in Codex, World Organization for Animal Health (OIE), APEC, and other meetings but not specifically related to GE animals or fishery products. Korea applies substantial equivalence principles of Codex in their safety assessment process.

F) Related Issues

No related issues have been identified.

Part F: Marketing

A) Public/Private Opinions

Many Koreans believe that biotechnology is an important industry for Korea's economic development. Proponents have had some success in making economic, development, public health, and environmental arguments in favor of biotech. Korea continues to expand investment in R&D for biomaterial, biomedicine, bio-organs, and gene therapy, among others. However, consumers maintain a negative perspective of biotech used to produce animal or fishery products for food.

B) Market Acceptance/Studies

The public holds positive views on the use of biotech for animals or medical purposes but are negative towards its use in in food. This was demonstrated in 2019 though the results of KBCH's 11th annual survey of 800 Korean consumers' perceptions of biotech. In the 2019 KBCH consumer survey, 37 percent of respondents answered that Korea needs domestic production of GE animals, which is slightly higher than the 34 percent that had answered in the 2018 survey.

In the same survey, about 45 percent of respondents supported the application of gene editing technology in a livestock sector while only 18 percent of respondents disagreed the application.

CHAPTER 3: MICROBIAL BIOTECHNOLOGY

Part G: Production and Trade

A) Commercial Production

Korea commercially produces biotech microbes to produce sweeteners, and such microbial biotech-derived sweeteners are available in domestic market.

B) Exports

Korea does not export biotech microbes or biotech-derived food ingredients yet. However, some Korean sweetener companies are preparing to export microbial biotech-derived sweeteners to foreign markets. Korea exports alcoholic beverages, dairy products, and processed products, which may contain microbial biotech-derived food ingredients.

C) Imports

Korea does not import any biotech microbes. However, Korea imports microbial biotech-derived food ingredients, such as chymosin. Microbial biotech-derived food ingredients likely are in Korean imports of alcoholic beverages, dairy products, and processed products, where microbial biotech-derived ingredients are commonly used in global production.

D) Trade Barriers

No specific trade barrier has been identified.

Part H: Policy

A) Regulatory Framework

The Food Sanitation Act applies to biotech microbes and microbial biotech-derived food ingredients, which requires a safety assessment. The LMO Act also applies to biotech microbes and requires environmental consultation as biotech microbes are considered a living modified organism.

B) Approvals

Biotech microbes, developed domestically or imported, are required to undergo a food safety assessment and environmental risk consultation. MFDS conducts the food safety assessment and consult with RDA, NIE and NFRDI on environmental aspects in accordance with the LMO Act. For microbial biotech-derived food ingredients, MFDS conducts the food safety assessment, and no environmental risk consultation is required. As of October 2020, MFDS has granted food safety approval for 7 GE microbes. See the Appendix for a complete list of approved microbes and food ingredients.

C) Labeling and Traceability

Korea does not require biotech labeling for processing aids. Food ingredients derived from biotech microbes do not require biotech labeling. Thus, microbial biotech-derived sweeteners do not carry biotech labels. The same rule applies to food products containing microbial

biotech-derived ingredients (e.g. cheese made with chymosin produced with GE microbes). No biotech labeling is required for food products made from biotech food ingredients.

D) Monitoring and Testing

No specific information is available.

E) Additional Regulatory Requirements

Korea requires a safety assessment of food ingredients that are made with biotech microbes that have completed biotech safety assessment. Korea proposed a revision to exempt this redundant safety assessment requirement under its WTO Notification SPS 695 in July 2020.

F) Intellectual Property Rights

Intellectual Property Rights (IPR) are protected under existing domestic IPR regulations.

G) Related Issues

No related issues have been identified.

Part I: Marketing

A) Public/Private Opinions

Generally, Koreans have a positive view of technological innovation and its use in everyday life. However, this view does not carry over to technological advances in food for human consumption. Since biotech microbes and derived food ingredients are not free-standing items thought to be directly consumed, there is little public awareness that this technology is widely used in food production. As result, there are minimal public or private opinions surrounding these topics.

B) Market Acceptances/Studies

Sweetener companies advertise that microbial biotech-derived sweeteners are a healthy low-calorie substitute for sugar. As consumer-ready products do not carry biotech labeling, consumers are generally unaware they are made from biotech microbes. Various meal substitutes and special food products for individuals with health conditions are commercially available in the Korean market.

Market acceptance studies are not available.

APPENDIX: APPROVED EVENT LIST

TABLE OF APPROVED PLANT BIOTECHNOLOGY PRODUCTS AS OF OCTOBER 2020

Note: Biotechnology products are required to undergo a food safety assessment and ERA.

Crop	Event	Applicant	Trait	Approval	Approval Date
Soybean	GTS40-3-2	Monsanto	Herbicide	Food & Feed	
			Tolerance		2020* & 2004
			(HT)		
Soybean	MON89788	Monsanto	HT	Food & Feed	2019* & 2009
Soybean	A2704-12	Bayer	HT	Food & Feed	2019* & 2009
Soybean	DP-356043-5	DuPont	HT	Food & Feed	2010 & 2009
Soybean	DP-305423-1	DuPont	High oleic	Food & Feed	2010
Soybean	A5547-127	Bayer	HT	Food & Feed	2011
Soybean	CV127	BASF	HT	Feed & Food	2011 & 2013
Soybean	MON87701	Monsanto	IR	Food & Feed	2011
Soybean	MON87769	Monsanto	SDA	Feed & Food	2012 & 2013
Soybean	MON87705	Monsanto	High oleic	Feed & Food	2012 & 2013
Soybean	MON87708	Monsanto	HT	Feed & Food	2012 & 2013
Soybean	DP-305423-1 X	DuPont	High oleic,	Food & Feed	2011
	GTS40-3-2		HT		
Soybean	MON87701 X	Monsanto	HT, Insect	Feed & Food	2012
	MON89788		Resistance		
			(IR)		
Soybean	MON87705 X	Monsanto	,	Food & Feed	2013 & 2014
	MON89788		HT		
Soybean	MON87769 X	Monsanto	HT	Food & Feed	2013 & 2015
	MON89788				
Soybean	FG72	Bayer	HT	Feed & Food	2013 & 2014
Soybean	MON87708 X	Monsanto	HT	Food & Feed	2013 & 2014
	MON89788				
Soybean	SYHT0H2	Syngenta	HT	Food & Feed	2014
Soybean	DAS-68416-4	Dow	HT	Food & Feed	2014
Soybean	DAS-44406-6	Dow	HT	Food & Feed	2014
Soybean	DAS-81419-2	Dow	IR, HT	Food & Feed	2016
Soybean	DAS-68416-4 X	Dow	HT	Food & Feed	2015 & 2016
~ 1	MON89788				2011
Soybean	MON87751	Monsanto	IR	Food & Feed	2016
Soybean	FG72 X A5547-	Bayer	HT	Food & Feed	2016
C 1-	127	Mana	TT: -1 '	E10 E 1	2016 0 2017
Soybean	MON87705 X	Monsanto	,	Food & Feed	2016 & 2017
	MON87708 X		HT		
Carda	MON89788	Managusta	ID IIT	Food 0 Feet	2017
Soybean	MON87751 X	Monsanto	IR, HT	Food & Feed	2017

	MON87701 X				
	MON87708 X MON89788				
Soybean	DAS-81419-2 X DAS-44406-6	Dow	IR, HT	Food & Feed	2017 & 2018
Soybean	MON87708 X MON89788 X A5547-127	Monsanto	НТ	Food & Feed	2017 & 2018
Soybean	DP-305423-1 X MON87708 X MON89788	Dupont	HT, High oleic	Food & Feed	2018
Corn	MON810	Monsanto	IR	Food & Feed	2012* & 2004
Corn	TC1507	DuPont	HT, IR	Food & Feed	2012* & 2004
Corn	GA21	Monsanto	HT	Food & Feed	2020* & 2007
Corn	NK603	Monsanto	HT	Food & Feed	2012* & 2004
Corn	Bt 11	Syngenta	HT, IR	Food & Feed	2013* & 2006
Corn	T25	Aventis / Bayer	HT	Food & Feed	2003 & 2004
Corn	MON863	Monsanto	IR	Food & Feed	2003 & 2004
Corn	Bt176	Syngenta	HT, IR	Food & Feed	2003 & 2006
Corn1)	DLL25	Monsanto	HT	Food	2004
Corn1)	DBT418	Monsanto	HT, IR	Food	2004
Corn	MON863 X NK603	Monsanto	HT, IR	Food & Feed	2004 & 2008
Corn	MON863 X MON810	Monsanto	IR	Food & Feed	2004 & 2008
Corn	MON810 X GA21	Monsanto	HT, IR	Food	2004
Corn	MON810 X NK603	Monsanto	HT, IR	Food & Feed	2004 & 2008
Corn	MON810 X MON863 X NK603	Monsanto	HT, IR	Food & Feed	2004 & 2008
Corn	TC1507 X NK603	DuPont	HT, IR	Food & Feed	2004 & 2008
Corn	Das-59122-7	DuPont	HT, IR	Food & Feed	2005
Corn	Mon88017	Monsanto	HT, IR	Food & Feed	2006 & 2016
Corn	Das-59122-7 X TC1507 X NK603	DuPont	HT, IR	Food & Feed	2006 & 2008
Corn	TC1507 X Das- 59122-7	DuPont	HT, IR	Food & Feed	2006 & 2008
Corn	Das-59122-7 X NK603	DuPont	HT, IR	Food & Feed	2006 & 2008
Corn	Bt11 X GA21	Syngenta	HT, IR	Food & Feed	2006 & 2008
Corn	MON88017 X MON810	Monsanto	HT, IR	Food & Feed	2006 & 2008

Corn2)	Bt10	Syngenta	HT, IR	Food	2007
Corn	MIR604	Syngenta	IR	Food & Feed	2017* & 2008
Corn	MIR604 X GA21	Syngenta	HT, IR	Food & Feed	2008
Corn	Bt11 X MIR604	Syngenta	HT, IR	Food & Feed	2007 & 2008
Corn	Bt11 X MIR604 X	Syngenta	HT, IR	Food & Feed	2008
	GA21	Jg	,		
Corn	Mon89034	Monsanto	IR	Food & Feed	2019* & 2009
Corn	Mon89034 X Mon88017	Monsanto	HT, IR	Food & Feed	2009
Corn	Smart stack	Monsanto/ Dow	HT, IR	Food & Feed	2009
Corn	Mon89034 X NK603	Monsanto	HT, IR	Food & Feed	2010 & 2009
Corn	NK603 X T25	Monsanto	HT	Food & Feed	2010 & 2011
Corn	Mon89034 X TC1507 X Nk603	Monsanto/ Dow	HT, IR	Food & Feed	2010 & 2011
Corn	MIR162	Syngenta	IR	Food & Feed	2010 & 2008
Corn	DP-098141-6	DuPont	HT	Food & Feed	2010
Corn	TC1507 X Mon810 X NK603	DuPont	HT, IR	Food & Feed	2010
Corn	TC1507 X DAS- 591227 X Mon810 X NK603	DuPont	HT, IR	Food & Feed	2010
Corn	Bt11 X MIR162 X MIR604 X GA21	Syngenta	HT, IR	Food & Feed	2010 & 2011
Corn	Event3272	Syngenta	Functional trait	Food & Feed	2011
Corn	Bt11 X MIR162 X GA21	Syngenta	HT, IR	Feed & Food	2011 & 2012
Corn	TC1507 X MIR604 X NK603	DuPont	HT, IR	Food & Feed	2011
Corn	MON87460	Monsanto	Drought Resistance (DR)	Feed & Food	2011 & 2012
Corn	Bt11 X DAS- 591227 X MIR604 X TC1507 X GA21	Syngenta	HT, IR	Feed & Food	2011 & 2013
Corn	TC1507 X DAS- 591227 X MON810 X MIR604 X NK603	DuPont	HT, IR	Food & Feed	2012
Corn	Bt11 X MIR162 X TC1507 X GA21	Syngenta	HT, IR	Feed & Food	2012
Corn	3272 X Bt11 X	Syngenta	HT, IR	Feed & Food	2012 & 2013

	MIR604 X GA21				
Corn	MON87460 X MON89034 X NK603	Monsanto	DR, HT, IR	Feed & Food	2012 & 2013
Corn	MON87460 X MON89034 X MON88017	Monsanto	DR, HT, IR	Feed & Food	2012 & 2013
Corn	MON87460 X NK603	Monsanto	DR, HT	Feed & Food	2012 & 2013
Corn	TC1507 X MON810 X MIR162X NK603	DuPont	HT, IR	Feed & Food	2013
Corn	5307	Syngenta	IR	Feed & Food	2013
Corn	Bt11 X MIR604 X TC1507 X 5307 X GA21	Syngenta	IR	Food & Feed	2013 & 2014
Corn	Bt11 X MIR162 X MIR604 X TC1507 X 5307 X GA21	Syngenta	IR	Food & Feed	2013 & 2014
Corn	MON87427	Monsanto	HT	Feed & Food	2013 & 2014
Corn	MON87427 X MON89034 X NK603	Monsanto	HT, IR	Food & Feed	2014
Corn	MON87427 X MON89034 X MON88017	Monsanto	HT, IR	Food & Feed	2014
Corn	TC1507 X MON810 X MIR604 X NK603	DuPont	HT, IR	Food & Feed	2014
Corn	DAS-40278-9	Dow	HT	Food & Feed	2014
Corn	GA21 X T25	Syngenta	HT	Food & Feed	2014
Corn	TC1507 X MON810	DuPont	IR, HT	Food & Feed	2014
Corn	DP-004114-3	DuPont	IR, HT	Food & Feed	2014
Corn	3272 X Bt11 X MIR604 X TC1507 X 5307 X GA21	Syngenta	IR, HT, α- amylase	Food & Feed	2014 & 2015
Corn	MON89034 X TC1507 X MON88017 X DAS-59122-7 X DAS-40278-9	Dow	IR, HT	Food & Feed	2014 & 2015
Corn	TC1507 X	DuPont	IR, HT	Food & Feed	2015

	MON810 X MIR162				
Corn	NK603 X DAS- 40278-9	Dow	НТ	Food & Feed	2015
Corn	MON87427 X MON89034 X TC1507 X MON88017 X DAS-59122-7	Monsanto	IR, HT	Food & Feed	2015
Corn	DP-004114-3 X MON810 X MIR604 X NK603	DuPont	IR, HT	Food & Feed	2015
Corn	MON89034 X TC1507 X NK603 X DAS-40278-9	Dow	IR, HT	Food & Feed	2015
Corn	Bt11 X MIR162	Syngenta	IR, HT	Food & Feed	2016 & 2015
Corn	MON87427 X MON89034 X MIR162 X NK603	Monsanto	IR, HT	Food & Feed	2016
Corn	MON87411	Monsanto	IR, HT	Food & Feed	2016
Corn	Bt11 X TC1507 X GA21	Syngenta	IR, HT	Food & Feed	2016
Corn	Bt11 X MIR162 X MON89034 X GA21	Syngenta	IR, HT	Food & Feed	2016 & 2017
Corn	MON87403	Monsanto	Increased corn ear	Food & Feed	2017 & 2016
Corn	MON87419	Monsanto		Food & Feed	2017
Corn	MON87427 X MON89034 X TC1507 X MON87411 X DAS-59122-7	Monsanto	IR, HT	Food & Feed	2017
Corn	MON87427 X MON89034 X MIR162 X MON87411	Monsanto	IR, HT	Food & Feed	2017
Corn	VCO-01981-5	Genective	HT	Food & Feed	2018 & 2017
Corn	MZHG0JG	Syngenta	HT	Food & Feed	2017
Corn	MON89034 X TC1507 X MIR162 X NK603	Dow	HT, IR	Food & Feed	2017 & 2018
Corn	MON89034 X MIR162	Monsanto	IR	Food & Feed	2017
Corn	Bt11 X MIR162 X	Syngenta	HT, IR	Food & Feed	2017 & 2018

	MON89034				
Corn	Bt11 X MIR162 X MIR604 X MON89034 X 5307 X GA21	Syngenta	HT, IR	Food & Feed	2017 & 2018
Corn	MON87427 X MON87460 X MON89034 X TC1507 X MON87411 X DAS-59122-7	Monsanto	HT,IR	Food & Feed	2018 & 2017
Corn	MON89034 X TC1507 X MIR162 X NK603 X DAS-40278-9	Dow	HT, IR	Food & Feed	2018
Corn	MON87427 X MON89034 X MIR162 X MON87419 X NK603	Monsanto	HT, IR	Food & Feed	2018
Corn	MON87427 X MON89034 X MON810 X MIR162 X MON87411 X MON87419	Monsanto	HT, IR	Food and Feed	2019
Corn	MZIR098	Syngenta	HT, IR	Food & Feed	2019
Corn	MON87427 X MON89034 X MON87419 X NK603	Monsanto	HT, IR	Food & Feed	2020
Corn	NK603 X T25 X DAS-40278-9	Dow	НТ	Food	2020
Cotton	Mon531	Monsanto	IR	Food & Feed	2013* & 2004
Cotton	757	Monsanto	IR	Food & Feed	2003 & 2004
Cotton	Mon1445	Monsanto	HT	Food & Feed	2013* & 2004
Cotton	15985	Monsanto	IR	Food & Feed	2013* & 2004
Cotton	15985 X 1445	Monsanto	HT, IR	Food & Feed	2004 & 2008
Cotton	531 X 1445	Monsanto	HT, IR	Food & Feed	2004 & 2008
Cotton	281/3006	Dow Agro Science	HT, IR	Food & Feed	2014* & 2008
Cotton	Mon88913	Monsanto	HT	Food & Feed	2006 & 2016
Cotton	LLCotton 25	Bayer	HT	Food & Feed	2005
Cotton	Mon88913 X Mon15985	Monsanto	HT, IR	Food & Feed	2006 & 2008

Cotton	Mon15985 X	Bayer	HT, IR	Food & Feed	2006 & 2008
	LLCotton 25		,		
Cotton	281/3006 X	Dow Agro	HT, IR	Food & Feed	2006 & 2008
	Mon88913	Science			
Cotton	281/3006 X	Dow Agro	HT, IR	Food	2006
	Mon1445	Science			
Cotton	GHB614	Bayer	HT	Food & Feed	2010
Cotton	GHB614 X	Bayer	HT	Food & Feed	2012 & 2011
	LLCotton 25				
Cotton	GHB614 X	Bayer	HT, IR	Feed & Food	2011 & 2013
	LLCotton 25 X				
~	15985	_			2012 0 2012
Cotton	T304-40 X	Bayer	HT, IR	Feed & Food	2012 & 2013
G ···	GHB119	7	1.177	- 10 F 1	2012 0 2012
Cotton	GHB119	Bayer	HT	Feed & Food	2012 & 2013
Cotton	COT67B	Syngenta	IR	Feed	2013
Cotton	GHB614 X T304-	Bayer	HT, IR	Food & Feed	2013
G	40 X GHB119		10	- 10 F 1	201.4
Cotton	COT102	Syngenta	IR	Food & Feed	2014
Cotton	281/3006 X	Dow	IR, HT	Food & Feed	2014 & 2015
	COT102 X				
C 44	MON88913	N/L	TITE	Г 10 Г 1	2015
Cotton	MON88701	Monsanto	HT	Food & Feed	2015
Cotton	GHB614 X T304-	Bayer	IR, HT	Food & Feed	2015
	40 X GHB119 X COT102				
Cotton	MON88701 X	Monsanto	IR, HT	Food & Feed	2015
Cotton	MON88913 X	Wionsanto	IK, 111	rood & reed	2013
	MON15985				
Cotton	COT102 X	Monsanto	IR, HT	Food & Feed	2015 & 2016
Conon	MON15985 X	Wionsumo	110, 111	1 000 & 1 cca	2013 & 2010
	MON88913				
Cotton	DAS-81910-7	Dow	HT	Food & Feed	2016
Cotton	COT102 X	Monsanto	IR, HT	Food & Feed	2016
	MON15985 X		,		
	MON88913 X				
	MON88701				
Cotton	MON88701 X	Monsanto	IR, HT	Food & Feed	2016 & 2017
	MON88913				
Cotton	281/3006 X	Dow	IR, HT	Food & Feed	2017 & 2016
	COT102 X				
	MON88913 X				
	DAS-81910-7				
Cotton	T304-40 X	BASF	IR, HT	Feed	2018
	GHB119 X				

	COT102				
Cotton	GHB811	BASF	НТ	Food & Feed	2019
Canola	RT73 (GT73)	Monsanto	HT	Food & Feed	2013* & 2005
Canola	MS8/RF3	Bayer	HT	Food & Feed	2005 & 2014
Canola	T45	Bayer	HT	Food & Feed	2005
Canola1)	MS1/RF1	Bayer	HT	Food & Feed	2005 & 2008
Canola1)	MS1/RF2	Bayer	HT	Food & Feed	2005 & 2008
Canola1)	Topas19/2	Bayer	HT	Food & Feed	2005 & 2008
Canola	MS8	Bayer	HT, Male	Feed & Food	2012 & 2013
			sterility		
Canola	RF3	Bayer	HT	Feed & Food	2012 & 2013
Canola	MON88302	Monsanto	HT	Feed & Food	2014
Canola	MON88302 X RF3	Monsanto	HT, Fertile	Food & Feed	2014 & 2015
			restore		
Canola	MON88301 X	Monsanto	HT, Fertile	Food & Feed	2014 & 2015
	MS8 X RF3		restore		
Canola	MS8 X RF3 X	Bayer	HT, Fertile	Food & Feed	2015
	RT73		restore		
Canola	DP-073496-4	DuPont	HT	Food & Feed	2015
Canola	DP-073496-4 X	DuPont	HT, Fertile	Food & Feed	2017
	RF3		restore		
Canola	MS11	BASF	HT, Male	Food & Feed	2019
			sterility		
Canola	MS11 X RF3 X	BASF	HT, Male	Food & Feed	2020
	MON88302		sterility,		
			Fertile		
C 1	MC11 W DE2	D A GE	restore	E 10 E 1	2020
Canola	MS11 X RF3	BASF	HT, Male	Food & Feed	2020
			sterility, Fertile		
Potato1)	SPBT02-05	Monsanto	restore IR	Food	2004
Potato1)	RBBT06	Monsanto	IR	Food	2004
Potato1)	Newleaf Y	Monsanto	IR, Virus	Food	2004
1 otato1)	(RBMT15-101,	Wionsanto	Resistance	1.000	2004
	SEMT 15-02,		(VR)		
	SEMT 15-15)		(110)		
Potato1)	Newleaf Plus	Monsanto	IR, VR	Food	2004
	(RBMT21-129,		,		
	RBMT21-350,				
	RBMT22-82)				
Sugar beet	H7-1	Monsanto	HT	Food	2006 & 2016
Alfalfa	J101	Monsanto	HT	Food & Feed	2017 & 2008
Alfalfa	J163	Monsanto	HT	Food & Feed	2017 & 2008

Alfalfa	J101, J163, (J101 X J163 3)	Monsanto	HT	Food & Feed	2007 & 2008
Alfalfa	KK179		Reduced lignin	Food & Feed	2015
Alfalfa	KK179 X J101		Reduced lignin, HT	Food & Feed	2018 & 2016

Total Food Approval: 177 Total Feed Approval: 169

- 1) MFDS conditional approval for discontinued items
- 2) MFDS conditional approval for items that are not intended for commercialization
- 3) MFDS conditional approval as other category and adventitious presence is accepted

TABLE OF APPROVED BIOTECH MICROBES AS OF OCTOBER 2020

Note: Biotech microbes are required to undergo a food safety assessment and environmental consultation.

No	Name	Developer	Character (Microbe)	Approval
1	FIS001	CJ	To produce L-arabinose isomerase	June 2011
			Host: Corynebacterium glutamicum	
			Donor:Thermotoga neapolitana and E.coli	
2	FIS00	CJ	To produce D-cycos-3-isomerase	Feb 2015
			Host: Corynebacterium glutamicum	
			Donor: A. tumefaciens and E.coli	
3	DS00001	Daesang	To produce D-cycos-3-isomerase	Nov 2016
			Host: Corynebacterium glutamicum	
			Donor: F. plautii and E.coli	
4	SYG321-C	Samyangsa	To produce D-cycos-3-isomerase	Jan 2017
			Host: Corynebacterium glutamicum	
			Donor: C. scindens and E.coli	
5	DS00001-1	Daesang	To produce D-cycos-3-isomerase	Mar 2018
			Host: Corynebacterium glutamicum	
			Donor: F. plautii and E.coli	
6	FIS003	CJ	To produce D-fructose-4-isomerase	Aug 2018
			Host: Corynebacterium glutamicum	
7	APC199	AP Technology	To produce 2'-fucosylactose	Aug 2020
			Host: Corynebacterium glutamicum	
			Donor: E.coli K12	

Total Biotech Microbe Approvals: 7

^{*} Food approvals must be renewed every 10 years after the initial approval

TABLE OF APPROVED MICROBIAL BIOTECH-DERIVED FOOD INGREDIENTS AS OF OCTOBER 2020 $\,$

Note: Microbial biotech-derived food ingredients are required to undergo a food safety assessment.

No	Name	Applicant	Characteristics	Approval
1	Maltogenic amylase	Novozymes	Activate maltogenic	2000 / 2010
			amylase	
2	α - amylase	Novozymes	Activate α - amylase	2001 / 2011
3	Pulluranase	Novozymes	Activate pulluranase	2002 / 2012
4	Lipase	Novozymes	Activate lipase	2002 / 2012
5	Riboflavin	DSM Nutrition	Vitamin B2	2003 / 2013
				Discontinued
6	Novoshape	Novozymes	Activate pectin esterase	2003 / 2013
7	Optimax L-1000	Danisco	Activate pulluranase	2004 / 2014
8	Maturex L	Novozymes	Activate α – acetolactate	2004 / 2014
			dicarboxylase	
9	Lipopan H BG/	Novozymes	Activate lipase	2004 / 2014
	Lecitase Ultra			
10	Lipopan F BG/	Novozymes	Activate lipase	2004 / 2014
	Lecitase Novo			
11	Lipopan 50 BG/	Novozymes	Activate lipase	2004 /2014
	Lipozyme TL IM			
12	Pentopan Mono BG	Novozymes	Activate xylanase	2008 / 2018
13	Shearzyme 2X/500L	Novozymes	Activate xylanase	2008 / 2018
14	Gluco-amylase	Novozymes	Activate glucoamylase	2010 / 2020
15	Lipase	Novozymes	Activate lipase	2012
16	Trans-glucosidase	Danisco	Activate trans	2013
			glucosidase	
17	Pulluranase	Novozymes	Activate pulluranase	2015
18	Branching	Novozymes	Activate brancing	2015
	glycosyltransferase		glycosyltransferase	
19	ChyMax	Christian Jansen	Activate chymosin	2016
20	Saphera 2600L	Novozymes	Activate lactase	2018
21	Secura	Novozymes	Activate α - amylase	2018
22	Extenda Go 2 Extra	Novozymes	Activate α - amylase	2018
23	Extenda Go 2 Extra	Novozymes	Activate pulluranase	2018
24	ChyMax M1000	Christian Jansen	Activate chymosin	2018
25	Extenda Go 2 Extra	Novozymes	Activate glucoamylase	2019
26	CCD	Daesang	Activate	2020
	CCD		glycosyltransferase	
27	Saczyme go 2X	Novozymes	Activate glucoamylase	2020

Total Microbial Biotech-Derived Food Ingredient Approvals: 27

Attachments:

No Attachments